Paper Reading AI Learner

LDC-VAE: A Latent Distribution Consistency Approach to Variational AutoEncoders

2021-09-22 10:34:40
Xiaoyu Chen, Chen Gong, Qiang He, Xinwen Hou, Yu Liu

Abstract

Variational autoencoders (VAEs), as an important aspect of generative models, have received a lot of research interests and reached many successful applications. However, it is always a challenge to achieve the consistency between the learned latent distribution and the prior latent distribution when optimizing the evidence lower bound (ELBO), and finally leads to an unsatisfactory performance in data generation. In this paper, we propose a latent distribution consistency approach to avoid such substantial inconsistency between the posterior and prior latent distributions in ELBO optimizing. We name our method as latent distribution consistency VAE (LDC-VAE). We achieve this purpose by assuming the real posterior distribution in latent space as a Gibbs form, and approximating it by using our encoder. However, there is no analytical solution for such Gibbs posterior in approximation, and traditional approximation ways are time consuming, such as using the iterative sampling-based MCMC. To address this problem, we use the Stein Variational Gradient Descent (SVGD) to approximate the Gibbs posterior. Meanwhile, we use the SVGD to train a sampler net which can obtain efficient samples from the Gibbs posterior. Comparative studies on the popular image generation datasets show that our method has achieved comparable or even better performance than several powerful improvements of VAEs.

Abstract (translated)

URL

https://arxiv.org/abs/2109.10640

PDF

https://arxiv.org/pdf/2109.10640.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot