Paper Reading AI Learner

A Method For Adding Motion-Blur on Arbitrary Objects By using Auto-Segmentation and Color Compensation Techniques

2021-09-22 05:52:27
Michihiro Mikamo, Ryo Furukawa, Hiroshi Kawasaki

Abstract

When dynamic objects are captured by a camera, motion blur inevitably occurs. Such a blur is sometimes considered as just a noise, however, it sometimes gives an important effect to add dynamism in the scene for photographs or videos. Unlike the similar effects, such as defocus blur, which is now easily controlled even by smartphones, motion blur is still uncontrollable and makes undesired effects on photographs. In this paper, an unified framework to add motion blur on per-object basis is proposed. In the method, multiple frames are captured without motion blur and they are accumulated to create motion blur on target objects. To capture images without motion blur, shutter speed must be short, however, it makes captured images dark, and thus, a sensor gain should be increased to compensate it. Since a sensor gain causes a severe noise on image, we propose a color compensation algorithm based on non-linear filtering technique for solution. Another contribution is that our technique can be used to make HDR images for fast moving objects by using multi-exposure images. In the experiments, effectiveness of the method is confirmed by ablation study using several data sets.

Abstract (translated)

URL

https://arxiv.org/abs/2109.10524

PDF

https://arxiv.org/pdf/2109.10524.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot