Paper Reading AI Learner

Diarisation using Location tracking with agglomerative clustering

2021-09-22 08:54:10
Jeremy H. M. Wong, Igor Abramovski, Xiong Xiao, Yifan Gong

Abstract

Previous works have shown that spatial location information can be complementary to speaker embeddings for a speaker diarisation task. However, the models used often assume that speakers are fairly stationary throughout a meeting. This paper proposes to relax this assumption, by explicitly modelling the movements of speakers within an Agglomerative Hierarchical Clustering (AHC) diarisation framework. Kalman filters, which track the locations of speakers, are used to compute log-likelihood ratios that contribute to the cluster affinity computations for the AHC merging and stopping decisions. Experiments show that the proposed approach is able to yield improvements on a Microsoft rich meeting transcription task, compared to methods that do not use location information or that make stationarity assumptions.

Abstract (translated)

URL

https://arxiv.org/abs/2109.10598

PDF

https://arxiv.org/pdf/2109.10598.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot