Paper Reading AI Learner

Deep Bayesian Estimation for Dynamic Treatment Regimes with a Long Follow-up Time

2021-09-20 13:21:39
Adi Lin, Jie Lu, Junyu Xuan, Fujin Zhu, Guangquan Zhang

Abstract

Causal effect estimation for dynamic treatment regimes (DTRs) contributes to sequential decision making. However, censoring and time-dependent confounding under DTRs are challenging as the amount of observational data declines over time due to a reducing sample size but the feature dimension increases over time. Long-term follow-up compounds these challenges. Another challenge is the highly complex relationships between confounders, treatments, and outcomes, which causes the traditional and commonly used linear methods to fail. We combine outcome regression models with treatment models for high dimensional features using uncensored subjects that are small in sample size and we fit deep Bayesian models for outcome regression models to reveal the complex relationships between confounders, treatments, and outcomes. Also, the developed deep Bayesian models can model uncertainty and output the prediction variance which is essential for the safety-aware applications, such as self-driving cars and medical treatment design. The experimental results on medical simulations of HIV treatment show the ability of the proposed method to obtain stable and accurate dynamic causal effect estimation from observational data, especially with long-term follow-up. Our technique provides practical guidance for sequential decision making, and policy-making.

Abstract (translated)

URL

https://arxiv.org/abs/2109.11929

PDF

https://arxiv.org/pdf/2109.11929.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot