Paper Reading AI Learner

Abstraction, Reasoning and Deep Learning: A Study of the 'Look and Say' Sequence

2021-09-27 01:41:37
Wlodek W. Zadrozny

Abstract

The ability to abstract, count, and use System 2 reasoning are well-known manifestations of intelligence and understanding. In this paper, we argue, using the example of the ``Look and Say" puzzle, that although deep neural networks can exhibit high `competence' (as measured by accuracy) when trained on large data sets (2M examples in our case), they do not show any sign on the deeper understanding of the problem, or what D. Dennett calls `comprehension'. We report on two sets experiments on the ``Look and Say" puzzle data. We view the problem as building a translator from one set of tokens to another. We apply both standard LSTMs and Transformer/Attention -- based neural networks, using publicly available machine translation software. We observe that despite the amazing accuracy (on both, training and test data), the performance of the trained programs on the actual L\&S sequence is bad. We then discuss a few possible ramifications of this finding and connections to other work, experimental and theoretical. First, from the cognitive science perspective, we argue that we need better mathematical models of abstraction. Second, the classical and more recent results on the universality of neural networks should be re-examined for functions acting on discrete data sets. Mapping on discrete sets usually have no natural continuous extensions. This connects the results on a simple puzzle to more sophisticated results on modeling of mathematical functions, where algebraic functions are more difficult to model than e.g. differential equations. Third, we hypothesize that for problems such as ``Look and Say", computing the parity of bitstrings, or learning integer addition, it might be worthwhile to introduce concepts from topology, where continuity is defined without the reference to the concept of distance.

Abstract (translated)

URL

https://arxiv.org/abs/2109.12755

PDF

https://arxiv.org/pdf/2109.12755.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot