Paper Reading AI Learner

DAMix: Density-Aware Data Augmentation for Unsupervised Domain Adaptation on Single Image Dehazing

2021-09-26 09:45:59
Chia-Ming Chang, Chang-Sung Sung, Tsung-Nan Lin

Abstract

Learning-based methods have achieved great success on single image dehazing in recent years. However, these methods are often subject to performance degradation when domain shifts are confronted. Specifically, haze density gaps exist among the existing datasets, often resulting in poor performance when these methods are tested across datasets. To address this issue, we propose a density-aware data augmentation method (DAMix) that generates synthetic hazy samples according to the haze density level of the target domain. These samples are generated by combining a hazy image with its corresponding ground truth by a combination ratio sampled from a density-aware distribution. They not only comply with the atmospheric scattering model but also bridge the haze density gap between the source and target domains. DAMix ensures that the model learns from examples featuring diverse haze densities. To better utilize the various hazy samples generated by DAMix, we develop a dual-branch dehazing network involving two branches that can adaptively remove haze according to the haze density of the region. In addition, the dual-branch design enlarges the learning capacity of the entire network; hence, our network can fully utilize the DAMix-ed samples. We evaluate the effectiveness of DAMix by applying it to the existing open-source dehazing methods. The experimental results demonstrate that all methods show significant improvements after DAMix is applied. Furthermore, by combining DAMix with our model, we can achieve state-of-the-art (SOTA) performance in terms of domain adaptation.

Abstract (translated)

URL

https://arxiv.org/abs/2109.12544

PDF

https://arxiv.org/pdf/2109.12544.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot