Paper Reading AI Learner

Query-based Adversarial Attacks on Graph with Fake Nodes

2021-09-27 14:19:17
Zhengyi Wang, Zhongkai Hao, Hang Su, Jun Zhu

Abstract

While deep neural networks have achieved great success on the graph analysis, recent works have shown that they are also vulnerable to adversarial attacks where fraudulent users can fool the model with a limited number of queries. Compared with adversarial attacks on image classification, performing adversarial attack on graphs is challenging because of the discrete and non-differential nature of a graph. To address these issues, we proposed Cluster Attack, a novel adversarial attack by introducing a set of fake nodes to the original graph which can mislead the classification on certain victim nodes. Specifically, we query the victim model for each victim node to acquire their most adversarial feature, which is related to how the fake node's feature will affect the victim nodes. We further cluster the victim nodes into several subgroups according to their most adversarial features such that we can reduce the searching space. Moreover, our attack is performed in a practical and unnoticeable manner: (1) We protect the predicted labels of nodes which we are not aimed for from being changed during attack. (2) We attack by introducing fake nodes into the original graph without changing existing links and features. (3) We attack with only partial information about the attacked graph, i.e., by leveraging the information of victim nodes along with their neighbors within $k$-hop instead of the whole graph. (4) We perform attack with a limited number of queries about the predicted scores of the model in a black-box manner, i.e., without model architecture and parameters. Extensive experiments demonstrate the effectiveness of our method in terms of the success rate of attack.

Abstract (translated)

URL

https://arxiv.org/abs/2109.13069

PDF

https://arxiv.org/pdf/2109.13069.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot