Paper Reading AI Learner

Bayesian deep learning of affordances from RGB images

2021-09-27 07:39:47
Lorenzo Mur-Labadia, Ruben Martinez-Cantin

Abstract

Autonomous agents, such as robots or intelligent devices, need to understand how to interact with objects and its environment. Affordances are defined as the relationships between an agent, the objects, and the possible future actions in the environment. In this paper, we present a Bayesian deep learning method to predict the affordances available in the environment directly from RGB images. Based on previous work on socially accepted affordances, our model is based on a multiscale CNN that combines local and global information from the object and the full image. However, previous works assume a deterministic model, but uncertainty quantification is fundamental for robust detection, affordance-based reason, continual learning, etc. Our Bayesian model is able to capture both the aleatoric uncertainty from the scene and the epistemic uncertainty associated with the model and previous learning process. For comparison, we estimate the uncertainty using two state-of-the-art techniques: Monte Carlo dropout and deep ensembles. We also compare different types of CNN encoders for feature extraction. We have performed several experiments on an affordance database on socially acceptable behaviours and we have shown improved performance compared with previous works. Furthermore, the uncertainty estimation is consistent with the the type of objects and scenarios. Our results show a marginal better performance of deep ensembles, compared to MC-dropout on the Brier score and the Expected Calibration Error.

Abstract (translated)

URL

https://arxiv.org/abs/2109.12845

PDF

https://arxiv.org/pdf/2109.12845.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot