Paper Reading AI Learner

A multi-stage semi-supervised improved deep embedded clustering method for bearing fault diagnosis under the situation of insufficient labeled samples

2021-09-28 06:49:40
Tongda Sun, Gang Yu

Abstract

Intelligent data-driven fault diagnosis methods have been widely applied, but most of these methods need a large number of high-quality labeled samples. It costs a lot of labor and time to label data in actual industrial processes, which challenges the application of intelligent fault diagnosis methods. To solve this problem, a multi-stage semi-supervised improved deep embedded clustering (MS-SSIDEC) method is proposed for the bearing fault diagnosis under the insufficient labeled samples situation. This method includes three stages: pre-training, deep clustering and enhanced supervised learning. In the first stage, a skip-connection based convolutional auto-encoder (SCCAE) is proposed and pre-trained to automatically learn low-dimensional representations. In the second stage, a semi-supervised improved deep embedded clustering (SSIDEC) model that integrates the pre-trained auto-encoder with a clustering layer is proposed for deep clustering. Additionally, virtual adversarial training (VAT) is introduced as a regularization term to overcome the overfitting in the model's training. In the third stage, high-quality clustering results obtained in the second stage are assigned to unlabeled samples as pseudo labels. The labeled dataset is augmented by those pseudo-labeled samples and used to train a bearing fault discriminative model. The effectiveness of the method is evaluated on the Case Western Reserve University (CWRU) bearing dataset. The results show that the method can not only satisfy the semi-supervised learning under a small number of labeled samples, but also solve the problem of unsupervised learning, and has achieved better results than traditional diagnosis methods. This method provides a new research idea for fault diagnosis with limited labeled samples by effectively using unsupervised data.

Abstract (translated)

URL

https://arxiv.org/abs/2109.13521

PDF

https://arxiv.org/pdf/2109.13521.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot