Paper Reading AI Learner

DOODLER: Determining Out-Of-Distribution Likelihood from Encoder Reconstructions

2021-09-27 14:54:55
Jonathan S. Kent, Bo Li

Abstract

Deep Learning models possess two key traits that, in combination, make their use in the real world a risky prospect. One, they do not typically generalize well outside of the distribution for which they were trained, and two, they tend to exhibit confident behavior regardless of whether or not they are producing meaningful outputs. While Deep Learning possesses immense power to solve realistic, high-dimensional problems, these traits in concert make it difficult to have confidence in their real-world applications. To overcome this difficulty, the task of Out-Of-Distribution (OOD) Detection has been defined, to determine when a model has received an input from outside of the distribution for which it is trained to operate. This paper introduces and examines a novel methodology, DOODLER, for OOD Detection, which directly leverages the traits which result in its necessity. By training a Variational Auto-Encoder (VAE) on the same data as another Deep Learning model, the VAE learns to accurately reconstruct In-Distribution (ID) inputs, but not to reconstruct OOD inputs, meaning that its failure state can be used to perform OOD Detection. Unlike other work in the area, DOODLER requires only very weak assumptions about the existence of an OOD dataset, allowing for more realistic application. DOODLER also enables pixel-wise segmentations of input images by OOD likelihood, and experimental results show that it matches or outperforms methodologies that operate under the same constraints.

Abstract (translated)

URL

https://arxiv.org/abs/2109.13237

PDF

https://arxiv.org/pdf/2109.13237.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot