Paper Reading AI Learner

Adaptive Informative Path Planning Using Deep Reinforcement Learning for UAV-based Active Sensing

2021-09-28 09:00:55
Julius Rückin, Liren Jin, Marija Popović

Abstract

Aerial robots are increasingly being utilized for a wide range of environmental monitoring and exploration tasks. However, a key challenge is efficiently planning paths to maximize the information value of acquired data as an initially unknown environment is explored. To address this, we propose a new approach for informative path planning (IPP) based on deep reinforcement learning (RL). Bridging the gap between recent advances in RL and robotic applications, our method combines Monte Carlo tree search with an offline-learned neural network predicting informative sensing actions. We introduce several components making our approach applicable for robotic tasks with continuous high-dimensional state spaces and large action spaces. By deploying the trained network during a mission, our method enables sample-efficient online replanning on physical platforms with limited computational resources. Evaluations using synthetic data show that our approach performs on par with existing information-gathering methods while reducing runtime by a factor of 8-10. We validate the performance of our framework using real-world surface temperature data from a crop field.

Abstract (translated)

URL

https://arxiv.org/abs/2109.13570

PDF

https://arxiv.org/pdf/2109.13570.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot