Paper Reading AI Learner

Automated airway segmentation by learning graphical structure

2021-09-30 01:37:31
Yihua Yang

Abstract

In this research project, we put forward an advanced method for airway segmentation based on the existent convolutional neural network (CNN) and graph neural network (GNN). The method is originated from the vessel segmentation, but we ameliorate it and enable the novel model to perform better for datasets from computed tomography (CT) scans. Current methods for airway segmentation are considering the regular grid only. No matter what the detailed model is, including the 3-dimensional CNN or 2-dimensional CNN in three directions, the overall graph structures are not taken into consideration. In our model, with the neighbourhoods of airway taken into account, the graph structure is incorporated and the segmentation of airways are improved compared with the traditional CNN methods. We perform experiments on the chest CT scans, where the ground truth segmentation labels are produced manually. The proposed model shows that compared with the CNN-only method, the combination of CNN and GNN has a better performance in that the bronchi in the chest CT scans can be detected in most cases. In addition, the model we propose has a wide extension since the architecture is also utilitarian in fulfilling similar aims in other datasets. Hence, the state-of-the-art model is of great significance and highly applicable in our daily lives. Keywords: Airway segmentation, Convolutional neural network, Graph neural network

Abstract (translated)

URL

https://arxiv.org/abs/2109.14792

PDF

https://arxiv.org/pdf/2109.14792.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot