Paper Reading AI Learner

New Evolutionary Computation Models and their Applications to Machine Learning

2021-10-01 15:03:03
Mihai Oltean

Abstract

Automatic Programming is one of the most important areas of computer science research today. Hardware speed and capability have increased exponentially, but the software is years behind. The demand for software has also increased significantly, but it is still written in old fashion: by using humans. There are multiple problems when the work is done by humans: cost, time, quality. It is costly to pay humans, it is hard to keep them satisfied for a long time, it takes a lot of time to teach and train them and the quality of their output is in most cases low (in software, mostly due to bugs). The real advances in human civilization appeared during the industrial revolutions. Before the first revolution, most people worked in agriculture. Today, very few percent of people work in this field. A similar revolution must appear in the computer programming field. Otherwise, we will have so many people working in this field as we had in the past working in agriculture. How do people know how to write computer programs? Very simple: by learning. Can we do the same for software? Can we put the software to learn how to write software? It seems that is possible (to some degree) and the term is called Machine Learning. It was first coined in 1959 by the first person who made a computer perform a serious learning task, namely, Arthur Samuel. However, things are not so easy as in humans (well, truth to be said - for some humans it is impossible to learn how to write software). So far we do not have software that can learn perfectly to write software. We have some particular cases where some programs do better than humans, but the examples are sporadic at best. Learning from experience is difficult for computer programs. Instead of trying to simulate how humans teach humans how to write computer programs, we can simulate nature.

Abstract (translated)

URL

https://arxiv.org/abs/2110.00468

PDF

https://arxiv.org/pdf/2110.00468.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot