Paper Reading AI Learner

Learning of Inter-Label Geometric Relationships Using Self-Supervised Learning: Application To Gleason Grade Segmentation

2021-10-01 13:47:07
Dwarikanath Mahapatra

Abstract

Segmentation of Prostate Cancer (PCa) tissues from Gleason graded histopathology images is vital for accurate diagnosis. Although deep learning (DL) based segmentation methods achieve state-of-the-art accuracy, they rely on large datasets with manual annotations. We propose a method to synthesize for PCa histopathology images by learning the geometrical relationship between different disease labels using self-supervised learning. We use a weakly supervised segmentation approach that uses Gleason score to segment the diseased regions and the resulting segmentation map is used to train a Shape Restoration Network (ShaRe-Net) to predict missing mask segments in a self-supervised manner. Using DenseUNet as the backbone generator architecture we incorporate latent variable sampling to inject diversity in the image generation process and thus improve robustness. Experiments on multiple histopathology datasets demonstrate the superiority of our method over competing image synthesis methods for segmentation tasks. Ablation studies show the benefits of integrating geometry and diversity in generating high-quality images, and our self-supervised approach with limited class-labeled data achieves similar performance as fully supervised learning.

Abstract (translated)

URL

https://arxiv.org/abs/2110.00404

PDF

https://arxiv.org/pdf/2110.00404.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot