Paper Reading AI Learner

Induction, Popper, and machine learning

2021-10-02 16:52:28
Bruce Nielson, Daniel C. Elton

Abstract

Francis Bacon popularized the idea that science is based on a process of induction by which repeated observations are, in some unspecified way, generalized to theories based on the assumption that the future resembles the past. This idea was criticized by Hume and others as untenable leading to the famous problem of induction. It wasn't until the work of Karl Popper that this problem was solved, by demonstrating that induction is not the basis for science and that the development of scientific knowledge is instead based on the same principles as biological evolution. Today, machine learning is also taught as being rooted in induction from big data. Solomonoff induction implemented in an idealized Bayesian agent (Hutter's AIXI) is widely discussed and touted as a framework for understanding AI algorithms, even though real-world attempts to implement something like AIXI immediately encounter fatal problems. In this paper, we contrast frameworks based on induction with Donald T. Campbell's universal Darwinism. We show that most AI algorithms in use today can be understood as using an evolutionary trial and error process searching over a solution space. In this work we argue that a universal Darwinian framework provides a better foundation for understanding AI systems. Moreover, at a more meta level the process of development of all AI algorithms can be understood under the framework of universal Darwinism.

Abstract (translated)

URL

https://arxiv.org/abs/2110.00840

PDF

https://arxiv.org/pdf/2110.00840.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot