Paper Reading AI Learner

Dr.Aid: Supporting Data-governance Rule Compliance for Decentralized Collaboration in an Automated Way

2021-10-03 17:59:28
Rui Zhao, Malcolm Atkinson, Petros Papapanagiotou, Federica Magnoni, Jacques Fleuriot

Abstract

Collaboration across institutional boundaries is widespread and increasing today. It depends on federations sharing data that often have governance rules or external regulations restricting their use. However, the handling of data governance rules (aka. data-use policies) remains manual, time-consuming and error-prone, limiting the rate at which collaborations can form and respond to challenges and opportunities, inhibiting citizen science and reducing data providers' trust in compliance. Using an automated system to facilitate compliance handling reduces substantially the time needed for such non-mission work, thereby accelerating collaboration and improving productivity. We present a framework, Dr.Aid, that helps individuals, organisations and federations comply with data rules, using automation to track which rules are applicable as data is passed between processes and as derived data is generated. It encodes data-governance rules using a formal language and performs reasoning on multi-input-multi-output data-flow graphs in decentralised contexts. We test its power and utility by working with users performing cyclone tracking and earthquake modelling to support mitigation and emergency response. We query standard provenance traces to detach Dr.Aid from details of the tools and systems they are using, as these inevitably vary across members of a federation and through time. We evaluate the model in three aspects by encoding real-life data-use policies from diverse fields, showing its capability for real-world usage and its advantages compared with traditional frameworks. We argue that this approach will lead to more agile, more productive and more trustworthy collaborations and show that the approach can be adopted incrementally. This, in-turn, will allow more appropriate data policies to emerge opening up new forms of collaboration.

Abstract (translated)

URL

https://arxiv.org/abs/2110.01056

PDF

https://arxiv.org/pdf/2110.01056.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot