Paper Reading AI Learner

Multi-Agent Path Planning Using Deep Reinforcement Learning

2021-10-04 13:56:23
Mert Çetinkaya

Abstract

In this paper a deep reinforcement based multi-agent path planning approach is introduced. The experiments are realized in a simulation environment and in this environment different multi-agent path planning problems are produced. The produced problems are actually similar to a vehicle routing problem and they are solved using multi-agent deep reinforcement learning. In the simulation environment, the model is trained on different consecutive problems in this way and, as the time passes, it is observed that the model's performance to solve a problem increases. Always the same simulation environment is used and only the location of target points for the agents to visit is changed. This contributes the model to learn its environment and the right attitude against a problem as the episodes pass. At the end, a model who has already learned a lot to solve a path planning or routing problem in this environment is obtained and this model can already find a nice and instant solution to a given unseen problem even without any training. In routing problems, standard mathematical modeling or heuristics seem to suffer from high computational time to find the solution and it is also difficult and critical to find an instant solution. In this paper a new solution method against these points is proposed and its efficiency is proven experimentally.

Abstract (translated)

URL

https://arxiv.org/abs/2110.01460

PDF

https://arxiv.org/pdf/2110.01460.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot