Paper Reading AI Learner

An Ample Approach to Data and Modeling

2021-10-05 01:26:09
Luciano da F. Costa

Abstract

In the present work, we describe a framework for modeling how models can be built that integrates concepts and methods from a wide range of fields. The information schism between the real-world and that which can be gathered and considered by any individual information processing agent is characterized and discussed, which is followed by the presentation of a series of the adopted requisites while developing the modeling approach. The issue of mapping from datasets into models is subsequently addressed, as well as some of the respectively implied difficulties and limitations. Based on these considerations, an approach to meta modeling how models are built is then progressively developed. First, the reference M^* meta model framework is presented, which relies critically in associating whole datasets and respective models in terms of a strict equivalence relation. Among the interesting features of this model are its ability to bridge the gap between data and modeling, as well as paving the way to an algebra of both data and models which can be employed to combine models into hierarchical manner. After illustrating the M* model in terms of patterns derived from regular lattices, the reported modeling approach continues by discussing how sampling issues, error and overlooked data can be addressed, leading to the $M^{<\epsilon>}$ variant. The situation in which the data needs to be represented in terms of respective probability densities is treated next, yielding the $M^{<\sigma>}$ meta model, which is then illustrated respectively to a real-world dataset (iris flowers data). Several considerations about how the developed framework can provide insights about data clustering, complexity, collaborative research, deep learning, and creativity are then presented, followed by overall conclusions.

Abstract (translated)

URL

https://arxiv.org/abs/2110.01776

PDF

https://arxiv.org/pdf/2110.01776.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot