Paper Reading AI Learner

Attaining Interpretability in Reinforcement Learning via Hierarchical Primitive Composition

2021-10-05 05:59:31
Jeong-Hoon Lee, Jongeun Choi

Abstract

Deep reinforcement learning has shown its effectiveness in various applications and provides a promising direction for solving tasks with high complexity. In most reinforcement learning algorithms, however, two major issues need to be dealt with - the sample inefficiency and the interpretability of a policy. The former happens when the environment is sparsely rewarded and/or has a long-term credit assignment problem, while the latter becomes a problem when the learned policies are deployed at the customer side product. In this paper, we propose a novel hierarchical reinforcement learning algorithm that mitigates the aforementioned issues by decomposing the original task in a hierarchy and by compounding pretrained primitives with intents. We show how the proposed scheme can be employed in practice by solving a pick and place task with a 6 DoF manipulator.

Abstract (translated)

URL

https://arxiv.org/abs/2110.01833

PDF

https://arxiv.org/pdf/2110.01833.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot