Paper Reading AI Learner

Compression, The Fermi Paradox and Artificial Super-Intelligence

2021-10-05 06:17:02
Michael Timothy Bennett

Abstract

The following briefly discusses possible difficulties in communication with and control of an AGI (artificial general intelligence), building upon an explanation of The Fermi Paradox and preceding work on symbol emergence and artificial general intelligence. The latter suggests that to infer what someone means, an agent constructs a rationale for the observed behaviour of others. Communication then requires two agents labour under similar compulsions and have similar experiences (construct similar solutions to similar tasks). Any non-human intelligence may construct solutions such that any rationale for their behaviour (and thus the meaning of their signals) is outside the scope of what a human is inclined to notice or comprehend. Further, the more compressed a signal, the closer it will appear to random noise. Another intelligence may possess the ability to compress information to the extent that, to us, their signals would appear indistinguishable from noise (an explanation for The Fermi Paradox). To facilitate predictive accuracy an AGI would tend to more compressed representations of the world, making any rationale for their behaviour more difficult to comprehend for the same reason. Communication with and control of an AGI may subsequently necessitate not only human-like compulsions and experiences, but imposed cognitive impairment.

Abstract (translated)

URL

https://arxiv.org/abs/2110.01835

PDF

https://arxiv.org/pdf/2110.01835.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot