Paper Reading AI Learner

Deep Subspace analysing for Semi-Supervised multi-label classification of Diabetic Foot Ulcer

2021-10-05 03:00:42
Azadeh Alavi

Abstract

Diabetes is a global raising pandemic. Diabetes patients are at risk of developing foot ulcer that usually leads to limb amputation. In order to develop a self monitoring mobile application, in this work, we propose a novel deep subspace analysis pipeline for semi-supervised diabetic foot ulcer mulit-label classification. To avoid any chance of over-fitting, unlike recent state of the art deep semi-supervised methods, the proposed pipeline dose not include any data augmentation. Whereas, after extracting deep features, in order to make the representation shift invariant, we employ variety of data augmentation methods on each image and generate an image-sets, which is then mapped into a linear subspace. Moreover, the proposed pipeline reduces the cost of retraining when more new unlabelled data become available. Thus, the first stage of the pipeline employs the concept of transfer learning for feature extraction purpose through modifying and retraining a deep convolutional network architect known as Xception. Then, the output of a mid-layer is extracted to generate an image set representer of any given image with help of data augmentation methods. At this stage, each image is transferred to a linear subspace which is a point on a Grassmann Manifold topological space. Hence, to perform analyse them, the geometry of such manifold must be considered. As such, each labelled image is represented as a vector of distances to number of unlabelled images using geodesic distance on Grassmann manifold. Finally, Random Forest is trained for multi-label classification of diabetic foot ulcer images. The method is then evaluated on the blind test set provided by DFU2021 competition, and the result considerable improvement compared to using classical transfer learning with data augmentation.

Abstract (translated)

URL

https://arxiv.org/abs/2110.01795

PDF

https://arxiv.org/pdf/2110.01795.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot