Paper Reading AI Learner

A Methodology to Identify Cognition Gaps in Visual Recognition Applications Based on Convolutional Neural Networks

2021-10-05 14:26:17
Hannes Vietz, Tristan Rauch, Andreas Löcklin, Nasser Jazdi, Michael Weyrich

Abstract

Developing consistently well performing visual recognition applications based on convolutional neural networks, e.g. for autonomous driving, is very challenging. One of the obstacles during the development is the opaqueness of their cognitive behaviour. A considerable amount of literature has been published which describes irrational behaviour of trained CNNs showcasing gaps in their cognition. In this paper, a methodology is presented that creates worstcase images using image augmentation techniques. If the CNN's cognitive performance on such images is weak while the augmentation techniques are supposedly harmless, a potential gap in the cognition has been found. The presented worst-case image generator is using adversarial search approaches to efficiently identify the most challenging image. This is evaluated with the well-known AlexNet CNN using images depicting a typical driving scenario.

Abstract (translated)

URL

https://arxiv.org/abs/2110.02080

PDF

https://arxiv.org/pdf/2110.02080.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot