Paper Reading AI Learner

On The Vulnerability of Recurrent Neural Networks to Membership Inference Attacks

2021-10-06 20:20:35
Yunhao Yang, Parham Gohari, Ufuk Topcu

Abstract

We study the privacy implications of deploying recurrent neural networks in machine learning. We consider membership inference attacks (MIAs) in which an attacker aims to infer whether a given data record has been used in the training of a learning agent. Using existing MIAs that target feed-forward neural networks, we empirically demonstrate that the attack accuracy wanes for data records used earlier in the training history. Alternatively, recurrent networks are specifically designed to better remember their past experience; hence, they are likely to be more vulnerable to MIAs than their feed-forward counterparts. We develop a pair of MIA layouts for two primary applications of recurrent networks, namely, deep reinforcement learning and sequence-to-sequence tasks. We use the first attack to provide empirical evidence that recurrent networks are indeed more vulnerable to MIAs than feed-forward networks with the same performance level. We use the second attack to showcase the differences between the effects of overtraining recurrent and feed-forward networks on the accuracy of their respective MIAs. Finally, we deploy a differential privacy mechanism to resolve the privacy vulnerability that the MIAs exploit. For both attack layouts, the privacy mechanism degrades the attack accuracy from above 80% to 50%, which is equal to guessing the data membership uniformly at random, while trading off less than 10% utility.

Abstract (translated)

URL

https://arxiv.org/abs/2110.03054

PDF

https://arxiv.org/pdf/2110.03054.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot