Paper Reading AI Learner

Towards Federated Learning-Enabled Visible Light Communication in 6G Systems

2021-10-07 10:26:02
Shimaa Naser, Lina Bariah, Sami Muhaidat, Mahmoud Al-Qutayri, Ernesto Damiani, Merouane Debbah, Paschalis C. Sofotasios

Abstract

Visible light communication (VLC) technology was introduced as a key enabler for the next generation of wireless networks, mainly thanks to its simple and low-cost implementation. However, several challenges prohibit the realization of the full potentials of VLC, namely, limited modulation bandwidth, ambient light interference, optical diffuse reflection effects, devices non-linearity, and random receiver orientation. On the contrary, centralized machine learning (ML) techniques have demonstrated a significant potential in handling different challenges relating to wireless communication systems. Specifically, it was shown that ML algorithms exhibit superior capabilities in handling complicated network tasks, such as channel equalization, estimation and modeling, resources allocation, and opportunistic spectrum access control, to name a few. Nevertheless, concerns pertaining to privacy and communication overhead when sharing raw data of the involved clients with a server constitute major bottlenecks in the implementation of centralized ML techniques. This has motivated the emergence of a new distributed ML paradigm, namely federated learning (FL), which can reduce the cost associated with transferring raw data, and preserve privacy by training ML models locally and collaboratively at the clients' side. Hence, it becomes evident that integrating FL into VLC networks can provide ubiquitous and reliable implementation of VLC systems. With this motivation, this is the first in-depth review in the literature on the application of FL in VLC networks. To that end, besides the different architectures and related characteristics of FL, we provide a thorough overview on the main design aspects of FL based VLC systems. Finally, we also highlight some potential future research directions of FL that are envisioned to substantially enhance the performance and robustness of VLC systems.

Abstract (translated)

URL

https://arxiv.org/abs/2110.03319

PDF

https://arxiv.org/pdf/2110.03319.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot