Paper Reading AI Learner

MSHCNet: Multi-Stream Hybridized Convolutional Networks with Mixed Statistics in Euclidean/Non-Euclidean Spaces and Its Application to Hyperspectral Image Classification

2021-10-07 11:35:40
Shuang He, Haitong Tang, Xia Lu, Hongjie Yan, Nizhuan Wang

Abstract

It is well known that hyperspectral images (HSI) contain rich spatial-spectral contextual information, and how to effectively combine both spectral and spatial information using DNN for HSI classification has become a new research hotspot. Compared with CNN with square kernels, GCN have exhibited exciting potential to model spatial contextual structure and conduct flexible convolution on arbitrarily irregular image regions. However, current GCN only using first-order spectral-spatial signatures can result in boundary blurring and isolated misclassification. To address these, we first designed the graph-based second-order pooling (GSOP) operation to obtain contextual nodes information in non-Euclidean space for GCN. Further, we proposed a novel multi-stream hybridized convolutional network (MSHCNet) with combination of first and second order statistics in Euclidean/non-Euclidean spaces to learn and fuse multi-view complementary information to segment HSIs. Specifically, our MSHCNet adopted four parallel streams, which contained G-stream, utilizing the irregular correlation between adjacent land covers in terms of first-order graph in non-Euclidean space; C-stream, adopting convolution operator to learn regular spatial-spectral features in Euclidean space; N-stream, combining first and second order features to learn representative and discriminative regular spatial-spectral features of Euclidean space; S-stream, using GSOP to capture boundary correlations and obtain graph representations from all nodes in graphs of non-Euclidean space. Besides, these feature representations learned from four different streams were fused to integrate the multi-view complementary information for HSI classification. Finally, we evaluated our proposed MSHCNet on three hyperspectral datasets, and experimental results demonstrated that our method significantly outperformed state-of-the-art eight methods.

Abstract (translated)

URL

https://arxiv.org/abs/2110.03346

PDF

https://arxiv.org/pdf/2110.03346.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot