Paper Reading AI Learner

Model Adaptation: Historical Contrastive Learning for Unsupervised Domain Adaptation without Source Data

2021-10-07 12:13:00
Jiaxing Huang, Dayan Guan, Aoran Xiao, Shijian Lu

Abstract

Unsupervised domain adaptation aims to align a labeled source domain and an unlabeled target domain, but it requires to access the source data which often raises concerns in data privacy, data portability and data transmission efficiency. We study unsupervised model adaptation (UMA), or called Unsupervised Domain Adaptation without Source Data, an alternative setting that aims to adapt source-trained models towards target distributions without accessing source data. To this end, we design an innovative historical contrastive learning (HCL) technique that exploits historical source hypothesis to make up for the absence of source data in UMA. HCL addresses the UMA challenge from two perspectives. First, it introduces historical contrastive instance discrimination (HCID) that learns from target samples by contrasting their embeddings which are generated by the currently adapted model and the historical models. With the source-trained and earlier-epoch models as the historical models, HCID encourages UMA to learn instance-discriminative target representations while preserving the source hypothesis. Second, it introduces historical contrastive category discrimination (HCCD) that pseudo-labels target samples to learn category-discriminative target representations. Instead of globally thresholding pseudo labels, HCCD re-weights pseudo labels according to their prediction consistency across the current and historical models. Extensive experiments show that HCL outperforms and complements state-of-the-art methods consistently across a variety of visual tasks (e.g., segmentation, classification and detection) and setups (e.g., close-set, open-set and partial adaptation).

Abstract (translated)

URL

https://arxiv.org/abs/2110.03374

PDF

https://arxiv.org/pdf/2110.03374.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot