Paper Reading AI Learner

Computing an Optimal Pitching Strategy in a Baseball At-Bat

2021-10-08 18:09:08
Connor Douglas, Everett Witt, Mia Bendy, Yevgeniy Vorobeychik

Abstract

The field of quantitative analytics has transformed the world of sports over the last decade. To date, these analytic approaches are statistical at their core, characterizing what is and what was, while using this information to drive decisions about what to do in the future. However, as we often view team sports, such as soccer, hockey, and baseball, as pairwise win-lose encounters, it seems natural to model these as zero-sum games. We propose such a model for one important class of sports encounters: a baseball at-bat, which is a matchup between a pitcher and a batter. Specifically, we propose a novel model of this encounter as a zero-sum stochastic game, in which the goal of the batter is to get on base, an outcome the pitcher aims to prevent. The value of this game is the on-base percentage (i.e., the probability that the batter gets on base). In principle, this stochastic game can be solved using classical approaches. The main technical challenges lie in predicting the distribution of pitch locations as a function of pitcher intention, predicting the distribution of outcomes if the batter decides to swing at a pitch, and characterizing the level of patience of a particular batter. We address these challenges by proposing novel pitcher and batter representations as well as a novel deep neural network architecture for outcome prediction. Our experiments using Kaggle data from the 2015 to 2018 Major League Baseball seasons demonstrate the efficacy of the proposed approach.

Abstract (translated)

URL

https://arxiv.org/abs/2110.04321

PDF

https://arxiv.org/pdf/2110.04321.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot