Paper Reading AI Learner

Self-adaptive Multi-task Particle Swarm Optimization

2021-10-09 06:45:15
Xiaolong Zheng, Deyun Zhou, Na Li, Yu Lei, Tao Wu, Maoguo Gong

Abstract

Multi-task optimization (MTO) studies how to simultaneously solve multiple optimization problems for the purpose of obtaining better performance on each problem. Over the past few years, evolutionary MTO (EMTO) was proposed to handle MTO problems via evolutionary algorithms. So far, many EMTO algorithms have been developed and demonstrated well performance on solving real-world problems. However, there remain many works to do in adapting knowledge transfer to task relatedness in EMTO. Different from the existing works, we develop a self-adaptive multi-task particle swarm optimization (SaMTPSO) through the developed knowledge transfer adaptation strategy, the focus search strategy and the knowledge incorporation strategy. In the knowledge transfer adaptation strategy, each task has a knowledge source pool that consists of all knowledge sources. Each source (task) outputs knowledge to the task. And knowledge transfer adapts to task relatedness via individuals' choice on different sources of a pool, where the chosen probabilities for different sources are computed respectively according to task's success rate in generating improved solutions via these sources. In the focus search strategy, if there is no knowledge source benefit the optimization of a task, then all knowledge sources in the task's pool are forbidden to be utilized except the task, which helps to improve the performance of the proposed algorithm. Note that the task itself is as a knowledge source of its own. In the knowledge incorporation strategy, two different forms are developed to help the SaMTPSO explore and exploit the transferred knowledge from a chosen source, each leading to a version of the SaMTPSO. Several experiments are conducted on two test suites. The results of the SaMTPSO are comparing to that of 3 popular EMTO algorithms and a particle swarm algorithm, which demonstrates the superiority of the SaMTPSO.

Abstract (translated)

URL

https://arxiv.org/abs/2110.04473

PDF

https://arxiv.org/pdf/2110.04473.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot