Paper Reading AI Learner

Pairwise Margin Maximization for Deep Neural Networks

2021-10-09 09:18:06
Berry Weinstein, Shai Fine, Yacov Hel-Or

Abstract

The weight decay regularization term is widely used during training to constrain expressivity, avoid overfitting, and improve generalization. Historically, this concept was borrowed from the SVM maximum margin principle and extended to multi-class deep networks. Carefully inspecting this principle reveals that it is not optimal for multi-class classification in general, and in particular when using deep neural networks. In this paper, we explain why this commonly used principle is not optimal and propose a new regularization scheme, called {\em Pairwise Margin Maximization} (PMM), which measures the minimal amount of displacement an instance should take until its predicted classification is switched. In deep neural networks, PMM can be implemented in the vector space before the network's output layer, i.e., in the deep feature space, where we add an additional normalization term to avoid convergence to a trivial solution. We demonstrate empirically a substantial improvement when training a deep neural network with PMM compared to the standard regularization terms.

Abstract (translated)

URL

https://arxiv.org/abs/2110.04519

PDF

https://arxiv.org/pdf/2110.04519.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot