Paper Reading AI Learner

SGMNet: Scene Graph Matching Network for Few-Shot Remote Sensing Scene Classification

2021-10-09 07:43:40
Baoquan Zhang, Shanshan Feng, Xutao Li, Yunming Ye, Rui Ye

Abstract

Few-Shot Remote Sensing Scene Classification (FSRSSC) is an important task, which aims to recognize novel scene classes with few examples. Recently, several studies attempt to address the FSRSSC problem by following few-shot natural image classification methods. These existing methods have made promising progress and achieved superior performance. However, they all overlook two unique characteristics of remote sensing images: (i) object co-occurrence that multiple objects tend to appear together in a scene image and (ii) object spatial correlation that these co-occurrence objects are distributed in the scene image following some spatial structure patterns. Such unique characteristics are very beneficial for FSRSSC, which can effectively alleviate the scarcity issue of labeled remote sensing images since they can provide more refined descriptions for each scene class. To fully exploit these characteristics, we propose a novel scene graph matching-based meta-learning framework for FSRSSC, called SGMNet. In this framework, a scene graph construction module is carefully designed to represent each test remote sensing image or each scene class as a scene graph, where the nodes reflect these co-occurrence objects meanwhile the edges capture the spatial correlations between these co-occurrence objects. Then, a scene graph matching module is further developed to evaluate the similarity score between each test remote sensing image and each scene class. Finally, based on the similarity scores, we perform the scene class prediction via a nearest neighbor classifier. We conduct extensive experiments on UCMerced LandUse, WHU19, AID, and NWPU-RESISC45 datasets. The experimental results show that our method obtains superior performance over the previous state-of-the-art methods.

Abstract (translated)

URL

https://arxiv.org/abs/2110.04494

PDF

https://arxiv.org/pdf/2110.04494.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot