Paper Reading AI Learner

Space-Time-Separable Graph Convolutional Network for Pose Forecasting

2021-10-09 13:59:30
Theodoros Sofianos, Alessio Sampieri, Luca Franco, Fabio Galasso

Abstract

Human pose forecasting is a complex structured-data sequence-modelling task, which has received increasing attention, also due to numerous potential applications. Research has mainly addressed the temporal dimension as time series and the interaction of human body joints with a kinematic tree or by a graph. This has decoupled the two aspects and leveraged progress from the relevant fields, but it has also limited the understanding of the complex structural joint spatio-temporal dynamics of the human pose. Here we propose a novel Space-Time-Separable Graph Convolutional Network (STS-GCN) for pose forecasting. For the first time, STS-GCN models the human pose dynamics only with a graph convolutional network (GCN), including the temporal evolution and the spatial joint interaction within a single-graph framework, which allows the cross-talk of motion and spatial correlations. Concurrently, STS-GCN is the first space-time-separable GCN: the space-time graph connectivity is factored into space and time affinity matrices, which bottlenecks the space-time cross-talk, while enabling full joint-joint and time-time correlations. Both affinity matrices are learnt end-to-end, which results in connections substantially deviating from the standard kinematic tree and the linear-time time series. In experimental evaluation on three complex, recent and large-scale benchmarks, Human3.6M [Ionescu et al. TPAMI'14], AMASS [Mahmood et al. ICCV'19] and 3DPW [Von Marcard et al. ECCV'18], STS-GCN outperforms the state-of-the-art, surpassing the current best technique [Mao et al. ECCV'20] by over 32% in average at the most difficult long-term predictions, while only requiring 1.7% of its parameters. We explain the results qualitatively and illustrate the graph interactions by the factored joint-joint and time-time learnt graph connections. Our source code is available at: this https URL

Abstract (translated)

URL

https://arxiv.org/abs/2110.04573

PDF

https://arxiv.org/pdf/2110.04573.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot