Paper Reading AI Learner

HydraSum -- Disentangling Stylistic Features in Text Summarization using Multi-Decoder Models

2021-10-08 22:49:49
Tanya Goyal, Nazneen Fatema Rajani, Wenhao Liu, Wojciech Kryściński

Abstract

Existing abstractive summarization models lack explicit control mechanisms that would allow users to influence the stylistic features of the model outputs. This results in generating generic summaries that do not cater to the users needs or preferences. To address this issue we introduce HydraSum, a new summarization architecture that extends the single decoder framework of current models, e.g. BART, to a mixture-of-experts version consisting of multiple decoders. Our proposed model encourages each expert, i.e. decoder, to learn and generate stylistically-distinct summaries along dimensions such as abstractiveness, length, specificity, and others. At each time step, HydraSum employs a gating mechanism that decides the contribution of each individual decoder to the next token's output probability distribution. Through experiments on three summarization datasets (CNN, Newsroom, XSum), we demonstrate that this gating mechanism automatically learns to assign contrasting summary styles to different HydraSum decoders under the standard training objective without the need for additional supervision. We further show that a guided version of the training process can explicitly govern which summary style is partitioned between decoders, e.g. high abstractiveness vs. low abstractiveness or high specificity vs. low specificity, and also increase the stylistic-difference between individual decoders. Finally, our experiments demonstrate that our decoder framework is highly flexible: during inference, we can sample from individual decoders or mixtures of different subsets of the decoders to yield a diverse set of summaries and enforce single- and multi-style control over summary generation.

Abstract (translated)

URL

https://arxiv.org/abs/2110.04400

PDF

https://arxiv.org/pdf/2110.04400.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot