Paper Reading AI Learner

Precision and Fitness in Object-Centric Process Mining

2021-10-06 15:49:56
Jan Niklas Adams, Wil M.P. van der Aalst

Abstract

Traditional process mining considers only one single case notion and discovers and analyzes models based on this. However, a single case notion is often not a realistic assumption in practice. Multiple case notions might interact and influence each other in a process. Object-centric process mining introduces the techniques and concepts to handle multiple case notions. So far, such event logs have been standardized and novel process model discovery techniques were proposed. However, notions for evaluating the quality of a model are missing. These are necessary to enable future research on improving object-centric discovery and providing an objective evaluation of model quality. In this paper, we introduce a notion for the precision and fitness of an object-centric Petri net with respect to an object-centric event log. We give a formal definition and accompany this with an example. Furthermore, we provide an algorithm to calculate these quality measures. We discuss our precision and fitness notion based on an event log with different models. Our precision and fitness notions are an appropriate way to generalize quality measures to the object-centric setting since we are able to consider multiple case notions, their dependencies and their interactions.

Abstract (translated)

URL

https://arxiv.org/abs/2110.05375

PDF

https://arxiv.org/pdf/2110.05375.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot