Paper Reading AI Learner

Investigating Transfer Learning Capabilities of Vision Transformers and CNNs by Fine-Tuning a Single Trainable Block

2021-10-11 13:43:03
Durvesh Malpure, Onkar Litake, Rajesh Ingle

Abstract

In recent developments in the field of Computer Vision, a rise is seen in the use of transformer-based architectures. They are surpassing the state-of-the-art set by CNN architectures in accuracy but on the other hand, they are computationally very expensive to train from scratch. As these models are quite recent in the Computer Vision field, there is a need to study it's transfer learning capabilities and compare it with CNNs so that we can understand which architecture is better when applied to real world problems with small data. In this work, we follow a simple yet restrictive method for fine-tuning both CNN and Transformer models pretrained on ImageNet1K on CIFAR-10 and compare them with each other. We only unfreeze the last transformer/encoder or last convolutional block of a model and freeze all the layers before it while adding a simple MLP at the end for classification. This simple modification lets us use the raw learned weights of both these neural networks. From our experiments, we find out that transformers-based architectures not only achieve higher accuracy than CNNs but some transformers even achieve this feat with around 4 times lesser number of parameters.

Abstract (translated)

URL

https://arxiv.org/abs/2110.05270

PDF

https://arxiv.org/pdf/2110.05270.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot