Paper Reading AI Learner

Adaptively Multi-view and Temporal Fusing Transformer for 3D Human Pose Estimation

2021-10-11 08:57:43
Hui Shuai, Lele Wu, Qingshan Liu

Abstract

In practical application, 3D Human Pose Estimation (HPE) is facing with several variable elements, involving the number of views, the length of the video sequence, and whether using camera calibration. To this end, we propose a unified framework named Multi-view and Temporal Fusing Transformer (MTF-Transformer) to adaptively handle varying view numbers and video length without calibration. MTF-Transformer consists of Feature Extractor, Multi-view Fusing Transformer (MFT), and Temporal Fusing Transformer (TFT). Feature Extractor estimates the 2D pose from each image and encodes the predicted coordinates and confidence into feature embedding for further 3D pose inference. It discards the image features and focuses on lifting the 2D pose into the 3D pose, making the subsequent modules computationally lightweight enough to handle videos. MFT fuses the features of a varying number of views with a relative-attention block. It adaptively measures the implicit relationship between each pair of views and reconstructs the features. TFT aggregates the features of the whole sequence and predicts 3D pose via a transformer, which is adaptive to the length of the video and takes full advantage of the temporal information. With these modules, MTF-Transformer handles different application scenes, varying from a monocular-single-image to multi-view-video, and the camera calibration is avoidable. We demonstrate quantitative and qualitative results on the Human3.6M, TotalCapture, and KTH Multiview Football II. Compared with state-of-the-art methods with camera parameters, experiments show that MTF-Transformer not only obtains comparable results but also generalizes well to dynamic capture with an arbitrary number of unseen views. Code is available in this https URL.

Abstract (translated)

URL

https://arxiv.org/abs/2110.05092

PDF

https://arxiv.org/pdf/2110.05092.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot