Paper Reading AI Learner

A Closer Look at Prototype Classifier for Few-shot Image Classification

2021-10-11 08:28:43
Mingcheng Hou, Issei Sato

Abstract

The prototypical network is a prototype classifier based on meta-learning and is widely used for few-shot learning because it classifies unseen examples by constructing class-specific prototypes without adjusting hyper-parameters during meta-testing. Interestingly, recent research has attracted a lot of attention, showing that a linear classifier with fine-tuning, which does not use a meta-learning algorithm, performs comparably with the prototypical network. However, fine-tuning requires additional hyper-parameters when adapting a model to a new environment. In addition, although the purpose of few-shot learning is to enable the model to quickly adapt to a new environment, fine-tuning needs to be applied every time a new class appears, making fast adaptation difficult. In this paper, we analyze how a prototype classifier works equally well without fine-tuning and meta-learning. We experimentally found that directly using the feature vector extracted using standard pre-trained models to construct a prototype classifier in meta-testing does not perform as well as the prototypical network and linear classifiers with fine-tuning and feature vectors of pre-trained models. Thus, we derive a novel generalization bound for the prototypical network and show that focusing on the variance of the norm of a feature vector can improve performance. We experimentally investigated several normalization methods for minimizing the variance of the norm and found that the same performance can be obtained by using the L2 normalization and embedding space transformation without fine-tuning or meta-learning.

Abstract (translated)

URL

https://arxiv.org/abs/2110.05076

PDF

https://arxiv.org/pdf/2110.05076.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot