Paper Reading AI Learner

DANIEL: A Fast and Robust Consensus Maximization Method for Point Cloud Registration with High Outlier Ratios

2021-10-11 08:27:00
Lei Sun

Abstract

Correspondence-based point cloud registration is a cornerstone in geometric computer vision, robotics perception, photogrammetry and remote sensing, which seeks to estimate the best rigid transformation between two point clouds from the correspondences established over 3D keypoints. However, due to limited robustness and accuracy, current 3D keypoint matching techniques are very prone to yield outliers, probably even in very large numbers, making robust estimation for point cloud registration of great importance. Unfortunately, existing robust methods may suffer from high computational cost or insufficient robustness when encountering high (or even extreme) outlier ratios, hardly ideal enough for practical use. In this paper, we present a novel time-efficient RANSAC-type consensus maximization solver, named DANIEL (Double-layered sAmpliNg with consensus maximization based on stratIfied Element-wise compatibiLity), for robust registration. DANIEL is designed with two layers of random sampling, in order to find inlier subsets with the lowest computational cost possible. Specifically, we: (i) apply the rigidity constraint to prune raw outliers in the first layer of one-point sampling, (ii) introduce a series of stratified element-wise compatibility tests to conduct rapid compatibility checking between minimal models so as to realize more efficient consensus maximization in the second layer of two-point sampling, and (iii) probabilistic termination conditions are employed to ensure the timely return of the final inlier set. Based on a variety of experiments over multiple real datasets, we show that DANIEL is robust against over 99% outliers and also significantly faster than existing state-of-the-art robust solvers (e.g. RANSAC, FGR, GORE).

Abstract (translated)

URL

https://arxiv.org/abs/2110.05075

PDF

https://arxiv.org/pdf/2110.05075.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot