Paper Reading AI Learner

Performance Evaluation of Deep Transfer Learning on Multiclass Identification of Common Weed Species in Cotton Production Systems

2021-10-11 01:51:48
Dong Chen, Yuzhen Lu, Zhaojiang Li, Sierra Young

Abstract

Precision weed management offers a promising solution for sustainable cropping systems through the use of chemical-reduced/non-chemical robotic weeding techniques, which apply suitable control tactics to individual weeds. Therefore, accurate identification of weed species plays a crucial role in such systems to enable precise, individualized weed treatment. This paper makes a first comprehensive evaluation of deep transfer learning (DTL) for identifying common weeds specific to cotton production systems in southern United States. A new dataset for weed identification was created, consisting of 5187 color images of 15 weed classes collected under natural lighting conditions and at varied weed growth stages, in cotton fields during the 2020 and 2021 field seasons. We evaluated 27 state-of-the-art deep learning models through transfer learning and established an extensive benchmark for the considered weed identification task. DTL achieved high classification accuracy of F1 scores exceeding 95%, requiring reasonably short training time (less than 2.5 hours) across models. ResNet101 achieved the best F1-score of 99.1% whereas 14 out of the 27 models achieved F1 scores exceeding 98.0%. However, the performance on minority weed classes with few training samples was less satisfactory for models trained with a conventional, unweighted cross entropy loss function. To address this issue, a weighted cross entropy loss function was adopted, which achieved substantially improved accuracies for minority weed classes. Furthermore, a deep learning-based cosine similarity metrics was employed to analyze the similarity among weed classes, assisting in the interpretation of classifications. Both the codes for model benchmarking and the weed dataset are made publicly available, which expect to be be a valuable resource for future research in weed identification and beyond.

Abstract (translated)

URL

https://arxiv.org/abs/2110.04960

PDF

https://arxiv.org/pdf/2110.04960.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot