Paper Reading AI Learner

Improving Gender Fairness of Pre-Trained Language Models without Catastrophic Forgetting

2021-10-11 15:52:16
Zahra Fatemi, Chen Xing, Wenhao Liu, Caiming Xiong

Abstract

Although pre-trained language models, such as BERT, achieve state-of-art performance in many language understanding tasks, they have been demonstrated to inherit strong gender bias from its training data. Existing studies addressing the gender bias issue of pre-trained models, usually recollect and build gender-neutral data on their own and conduct a second phase pre-training on the released pre-trained model with such data. However, given the limited size of the gender-neutral data and its potential distributional mismatch with the original pre-training data, catastrophic forgetting would occur during the second-phase pre-training. Forgetting on the original training data may damage the model's downstream performance to a large margin. In this work, we first empirically show that even if the gender-neutral data for second-phase pre-training comes from the original training data, catastrophic forgetting still occurs if the size of gender-neutral data is smaller than that of original training data. Then, we propose a new method, GEnder Equality Prompt (GEEP), to improve gender fairness of pre-trained models without forgetting. GEEP learns gender-related prompts to reduce gender bias, conditioned on frozen language models. Since all pre-trained parameters are frozen, forgetting on information from the original training data can be alleviated to the most extent. Then GEEP trains new embeddings of profession names as gender equality prompts conditioned on the frozen model. Empirical results show that GEEP not only achieves state-of-the-art performances on gender debiasing in various applications such as pronoun predicting and coreference resolution, but also achieves comparable results on general downstream tasks such as GLUE with original pre-trained models without much forgetting.

Abstract (translated)

URL

https://arxiv.org/abs/2110.05367

PDF

https://arxiv.org/pdf/2110.05367.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot