Paper Reading AI Learner

Stepwise-Refining Speech Separation Network via Fine-Grained Encoding in High-order Latent Domain

2021-10-10 13:21:16
Zengwei Yao, Wenjie Pei, Fanglin Chen, Guangming Lu, David Zhang

Abstract

The crux of single-channel speech separation is how to encode the mixture of signals into such a latent embedding space that the signals from different speakers can be precisely separated. Existing methods for speech separation either transform the speech signals into frequency domain to perform separation or seek to learn a separable embedding space by constructing a latent domain based on convolutional filters. While the latter type of methods learning an embedding space achieves substantial improvement for speech separation, we argue that the embedding space defined by only one latent domain does not suffice to provide a thoroughly separable encoding space for speech separation. In this paper, we propose the Stepwise-Refining Speech Separation Network (SRSSN), which follows a coarse-to-fine separation framework. It first learns a 1-order latent domain to define an encoding space and thereby performs a rough separation in the coarse phase. Then the proposed SRSSN learns a new latent domain along each basis function of the existing latent domain to obtain a high-order latent domain in the refining phase, which enables our model to perform a refining separation to achieve a more precise speech separation. We demonstrate the effectiveness of our SRSSN by conducting extensive experiments, including speech separation in a clean (noise-free) setting on WSJ0-2/3mix datasets as well as in noisy/reverberant settings on WHAM!/WHAMR! datasets. Furthermore, we also perform experiments of speech recognition on separated speech signals by our model to evaluate the performance of speech separation indirectly.

Abstract (translated)

URL

https://arxiv.org/abs/2110.04791

PDF

https://arxiv.org/pdf/2110.04791.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot