Paper Reading AI Learner

Rethinking the Spatial Route Prior in Vision-and-Language Navigation

2021-10-12 03:55:43
Xinzhe Zhou, Wei Liu, Yadong Mu

Abstract

Vision-and-language navigation (VLN) is a trending topic which aims to navigate an intelligent agent to an expected position through natural language instructions. This work addresses the task of VLN from a previously-ignored aspect, namely the spatial route prior of the navigation scenes. A critically enabling innovation of this work is explicitly considering the spatial route prior under several different VLN settings. In a most information-rich case of knowing environment maps and admitting shortest-path prior, we observe that given an origin-destination node pair, the internal route can be uniquely determined. Thus, VLN can be effectively formulated as an ordinary classification problem over all possible destination nodes in the scenes. Furthermore, we relax it to other more general VLN settings, proposing a sequential-decision variant (by abandoning the shortest-path route prior) and an explore-and-exploit scheme (for addressing the case of not knowing the environment maps) that curates a compact and informative sub-graph to exploit. As reported by [34], the performance of VLN methods has been stuck at a plateau in past two years. Even with increased model complexity, the state-of-the-art success rate on R2R validation-unseen set has stayed around 62% for single-run and 73% for beam-search with model-ensemble. We have conducted comprehensive evaluations on both R2R and R4R, and surprisingly found that utilizing the spatial route priors may be the key of breaking above-mentioned performance ceiling. For example, on R2R validation-unseen set, when the number of discrete nodes explored is about 40, our single-model success rate reaches 73%, and increases to 78% if a Speaker model is ensembled, which significantly outstrips previous state-of-the-art VLN-BERT with 3 models ensembled.

Abstract (translated)

URL

https://arxiv.org/abs/2110.05728

PDF

https://arxiv.org/pdf/2110.05728.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot