Paper Reading AI Learner

Spatial Data Mining of Public Transport Incidents reported in Social Media

2021-10-11 19:28:11
Kamil Raczycki, Marcin Szymański, Yahor Yeliseyenka, Piotr Szymański, Tomasz Kajdanowicz

Abstract

Public transport agencies use social media as an essential tool for communicating mobility incidents to passengers. However, while the short term, day-to-day information about transport phenomena is usually posted in social media with low latency, its availability is short term as the content is rarely made an aggregated form. Social media communication of transport phenomena usually lacks GIS annotations as most social media platforms do not allow attaching non-POI GPS coordinates to posts. As a result, the analysis of transport phenomena information is minimal. We collected three years of social media posts of a polish public transport company with user comments. Through exploration, we infer a six-class transport information typology. We successfully build an information type classifier for social media posts, detect stop names in posts, and relate them to GPS coordinates, obtaining a spatial understanding of long-term aggregated phenomena. We show that our approach enables citizen science and use it to analyze the impact of three years of infrastructure incidents on passenger mobility, and the sentiment and reaction scale towards each of the events. All these results are achieved for Polish, an under-resourced language when it comes to spatial language understanding, especially in social media contexts. To improve the situation, we released two of our annotated data sets: social media posts with incident type labels and matched stop names and social media comments with the annotated sentiment. We also opensource the experimental codebase.

Abstract (translated)

URL

https://arxiv.org/abs/2110.05573

PDF

https://arxiv.org/pdf/2110.05573.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot