Paper Reading AI Learner

Dealing with Disagreements: Looking Beyond the Majority Vote in Subjective Annotations

2021-10-12 03:12:34
Aida Mostafazadeh Davani, Mark Díaz, Vinodkumar Prabhakaran

Abstract

Majority voting and averaging are common approaches employed to resolve annotator disagreements and derive single ground truth labels from multiple annotations. However, annotators may systematically disagree with one another, often reflecting their individual biases and values, especially in the case of subjective tasks such as detecting affect, aggression, and hate speech. Annotator disagreements may capture important nuances in such tasks that are often ignored while aggregating annotations to a single ground truth. In order to address this, we investigate the efficacy of multi-annotator models. In particular, our multi-task based approach treats predicting each annotators' judgements as separate subtasks, while sharing a common learned representation of the task. We show that this approach yields same or better performance than aggregating labels in the data prior to training across seven different binary classification tasks. Our approach also provides a way to estimate uncertainty in predictions, which we demonstrate better correlate with annotation disagreements than traditional methods. Being able to model uncertainty is especially useful in deployment scenarios where knowing when not to make a prediction is important.

Abstract (translated)

URL

https://arxiv.org/abs/2110.05719

PDF

https://arxiv.org/pdf/2110.05719.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot