Paper Reading AI Learner

Automated Essay Scoring Using Transformer Models

2021-10-13 17:09:47
Sabrina Ludwig, Christian Mayer, Christopher Hansen, Kerstin Eilers, Steffen Brandt

Abstract

Automated essay scoring (AES) is gaining increasing attention in the education sector as it significantly reduces the burden of manual scoring and allows ad hoc feedback for learners. Natural language processing based on machine learning has been shown to be particularly suitable for text classification and AES. While many machine-learning approaches for AES still rely on a bag-of-words (BOW) approach, we consider a transformer-based approach in this paper, compare its performance to a logistic regression model based on the BOW approach and discuss their differences. The analysis is based on 2,088 email responses to a problem-solving task, that were manually labeled in terms of politeness. Both transformer models considered in that analysis outperformed without any hyper-parameter tuning the regression-based model. We argue that for AES tasks such as politeness classification, the transformer-based approach has significant advantages, while a BOW approach suffers from not taking word order into account and reducing the words to their stem. Further, we show how such models can help increase the accuracy of human raters, and we provide a detailed instruction on how to implement transformer-based models for one's own purpose.

Abstract (translated)

URL

https://arxiv.org/abs/2110.06874

PDF

https://arxiv.org/pdf/2110.06874


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Attention Autonomous Bert Boundary_Detection Caption Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Drone Dynamic_Memory_Network Edge_Detection Embedding Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot