Paper Reading AI Learner

Extending Environments To Measure Self-Reflection In Reinforcement Learning

2021-10-13 17:22:27
Samuel Allen Alexander, Michael Castaneda, Kevin Compher, Oscar Martinez


We consider an extended notion of reinforcement learning in which the environment can simulate the agent and base its outputs on the agent's hypothetical behavior. Since good performance usually requires paying attention to whatever things the environment's outputs are based on, we argue that for an agent to achieve on-average good performance across many such extended environments, it is necessary for the agent to self-reflect. Thus, an agent's self-reflection ability can be numerically estimated by running the agent through a battery of extended environments. We are simultaneously releasing an open-source library of extended environments to serve as proof-of-concept of this technique. As the library is first-of-kind, we have avoided the difficult problem of optimizing it. Instead we have chosen environments with interesting properties. Some seem paradoxical, some lead to interesting thought experiments, some are even suggestive of how self-reflection might have evolved in nature. We give examples and introduce a simple transformation which experimentally seems to increase self-reflection.

Abstract (translated)



3D Action Action_Localization Action_Recognition Activity Adversarial Attention Autonomous Bert Boundary_Detection Caption Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Drone Dynamic_Memory_Network Edge_Detection Embedding Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot