Paper Reading AI Learner

Traceback of Data Poisoning Attacks in Neural Networks

2021-10-13 17:39:18
Shawn Shan, Arjun Nitin Bhagoji, Haitao Zheng, Ben Y. Zhao

Abstract

In adversarial machine learning, new defenses against attacks on deep learning systems are routinely broken soon after their release by more powerful attacks. In this context, forensic tools can offer a valuable complement to existing defenses, by tracing back a successful attack to its root cause, and offering a path forward for mitigation to prevent similar attacks in the future. In this paper, we describe our efforts in developing a forensic traceback tool for poison attacks on deep neural networks. We propose a novel iterative clustering and pruning solution that trims "innocent" training samples, until all that remains is the set of poisoned data responsible for the attack. Our method clusters training samples based on their impact on model parameters, then uses an efficient data unlearning method to prune innocent clusters. We empirically demonstrate the efficacy of our system on three types of dirty-label (backdoor) poison attacks and three types of clean-label poison attacks, across domains of computer vision and malware classification. Our system achieves over 98.4% precision and 96.8% recall across all attacks. We also show that our system is robust against four anti-forensics measures specifically designed to attack it.

Abstract (translated)

URL

https://arxiv.org/abs/2110.06904

PDF

https://arxiv.org/pdf/2110.06904


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Attention Autonomous Bert Boundary_Detection Caption Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Drone Dynamic_Memory_Network Edge_Detection Embedding Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot