Paper Reading AI Learner

CNN-DST: ensemble deep learning based on Dempster-Shafer theory for vibration-based fault recognition

2021-10-14 07:34:27
Vahid Yaghoubi, Liangliang Cheng, Wim Van Paepegem, Mathias Kersemans

Abstract

Nowadays, using vibration data in conjunction with pattern recognition methods is one of the most common fault detection strategies for structures. However, their performances depend on the features extracted from vibration data, the features selected to train the classifier, and the classifier used for pattern recognition. Deep learning facilitates the fault detection procedure by automating the feature extraction and selection, and classification procedure. Though, deep learning approaches have challenges in designing its structure and tuning its hyperparameters, which may result in a low generalization capability. Therefore, this study proposes an ensemble deep learning framework based on a convolutional neural network (CNN) and Dempster-Shafer theory (DST), called CNN-DST. In this framework, several CNNs with the proposed structure are first trained, and then, the outputs of the CNNs selected by the proposed technique are combined by using an improved DST-based method. To validate the proposed CNN-DST framework, it is applied to an experimental dataset created by the broadband vibrational responses of polycrystalline Nickel alloy first-stage turbine blades with different types and severities of damage. Through statistical analysis, it is shown that the proposed CNN-DST framework classifies the turbine blades with an average prediction accuracy of 97.19%. The proposed CNN-DST framework is benchmarked with other state-of-the-art classification methods, demonstrating its high performance. The robustness of the proposed CNN-DST framework with respect to measurement noise is investigated, showing its high noise-resistance. Further, bandwidth analysis reveals that most of the required information for detecting faulty samples is available in a small frequency range.

Abstract (translated)

URL

https://arxiv.org/abs/2110.07191

PDF

https://arxiv.org/pdf/2110.07191.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot