Paper Reading AI Learner

Practical Benefits of Feature Feedback Under Distribution Shift

2021-10-14 17:35:23
Anurag Katakkar, Weiqin Wang, Clay H. Yoo, Zachary C. Lipton, Divyansh Kaushik

Abstract

In attempts to develop sample-efficient algorithms, researcher have explored myriad mechanisms for collecting and exploiting feature feedback, auxiliary annotations provided for training (but not test) instances that highlight salient evidence. Examples include bounding boxes around objects and salient spans in text. Despite its intuitive appeal, feature feedback has not delivered significant gains in practical problems as assessed on iid holdout sets. However, recent works on counterfactually augmented data suggest an alternative benefit of supplemental annotations: lessening sensitivity to spurious patterns and consequently delivering gains in out-of-domain evaluations. Inspired by these findings, we hypothesize that while the numerous existing methods for incorporating feature feedback have delivered negligible in-sample gains, they may nevertheless generalize better out-of-domain. In experiments addressing sentiment analysis, we show that feature feedback methods perform significantly better on various natural out-of-domain datasets even absent differences on in-domain evaluation. By contrast, on natural language inference tasks, performance remains comparable. Finally, we compare those tasks where feature feedback does (and does not) help.

Abstract (translated)

URL

https://arxiv.org/abs/2110.07566

PDF

https://arxiv.org/pdf/2110.07566.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot