Paper Reading AI Learner

MoFE: Mixture of Factual Experts for Controlling Hallucinations in Abstractive Summarization

2021-10-14 06:02:54
Prafulla Kumar Choubey, Jesse Vig, Wenhao Liu, Nazneen Fatema Rajani

Abstract

Neural abstractive summarization models are susceptible to generating factually inconsistent content, a phenomenon known as hallucination. This limits the usability and adoption of these systems in real-world applications. To reduce the presence of hallucination, we propose the Mixture of Factual Experts (MoFE) model, which combines multiple summarization experts that each target a specific type of error. We train our experts using reinforcement learning (RL) to minimize the error defined by two factual consistency metrics: entity overlap and dependency arc entailment. We construct MoFE by combining the experts using two ensembling strategies (weights and logits) and evaluate them on two summarization datasets (XSUM and CNN/DM). Our experiments on BART models show that the MoFE improves performance according to both entity overlap and dependency arc entailment, without a significant performance drop on standard ROUGE metrics. The performance improvement also transfers to unseen factual consistency metrics, such as question answer-based factuality evaluation metric and BERTScore precision with respect to the source document.

Abstract (translated)

URL

https://arxiv.org/abs/2110.07166

PDF

https://arxiv.org/pdf/2110.07166.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot