Paper Reading AI Learner

Human-Robot Collaboration and Machine Learning: A Systematic Review of Recent Research

2021-10-14 15:14:33
Francesco Semeraro, Alexander Griffiths, Angelo Cangelosi

Abstract

Technological progress increasingly envisions the use of robots interacting with people in everyday life. Human-robot collaboration (HRC) is the approach that explores the interaction between a human and a robot, during the completion of an actual physical task. Such interplay is explored both at the cognitive and physical level, by respectively analysing the mutual exchange of information and mechanical power. In HRC works, a cognitive model is typically built, which collects inputs from the environment and from the user, elaborates and translates these into information that can be used by the robot itself. HRC studies progressively employ machine learning algorithms to build the cognitive models and behavioural block that elaborates the acquired external inputs. This is a promising approach still in its early stages and with the potential of significant benefit from the growing field of machine learning. Consequently, this paper proposes a thorough literature review of the use of machine learning techniques in the context of human-robot collaboration. The collection,selection and analysis of the set of 45 key papers, selected from the wide review of the literature on robotics and machine learning, allowed the identification of the current trends in HRC. In particular, a clustering of works based on the type of collaborative tasks, evaluation metrics and cognitive variables modelled is proposed. With these premises, a deep analysis on different families of machine learning algorithms and their properties, along with the sensing modalities used, was carried out. The salient aspects of the analysis are discussed to show trends and suggest possible challenges to tackle in the future research.

Abstract (translated)

URL

https://arxiv.org/abs/2110.07448

PDF

https://arxiv.org/pdf/2110.07448.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot